静心探索重要的基础科学问题不求“短平快”70后物理学家翁红明******
翁红明在讲解电子运输理论。
田春璐摄
人物简介:
翁红明,1977年出生,现为中国科学院物理研究所凝聚态理论与材料计算实验室研究员、博士生导师。主要致力于凝聚态物理计算方法和程序的开发以及新奇量子现象的计算研究,成果入选2015年度中国科学十大进展、英国物理学会《物理世界》2015年度十大突破、美国物理学会《物理评论》系列期刊创刊125周年纪念文集等。
在中科院物理研究所(以下简称“物理所”)的年轻人里,研究员翁红明是小有名气的一位。就在刚刚过去的2022年,他因在数学物理学领域的杰出贡献,获得第四届“科学探索奖”。
在国际计算凝聚态物理研究领域,翁红明成果颇丰。其中最为人称道的,是他和同事们合作首次在固体中观测到外尔费米子和三重简并费米子的准粒子。这是国际上物理学研究的重要科学突破,对拓扑电子学和量子计算机等颠覆性技术的诞生具有非常重要的意义。
自由思考、厚积薄发,真正对人类文明有所贡献
1928年,英国物理学家保罗·狄拉克提出了描述相对论电子态的狄拉克方程。1929年,德国科学家赫尔曼·外尔指出,当质量为零时,狄拉克方程描述的是一对重叠的具有相反手性的新粒子,即外尔费米子。这种神奇的粒子带有电荷,却不具有质量,因而具有确定的手性(指一个物体不能与其镜像相重合,如我们的双手,左手与右手互成镜像,但不能重合)。
但是80多年过去了,科学家们一直没有能够在实验中观测到外尔费米子。直到2015年1月初,中科院物理所方忠研究员带领的研究组与普林斯顿大学研究小组合作,从理论上预言了在以砷化钽为代表的一批材料中存在着外尔费米子。此后,这个理论预言经过实验得到了进一步验证。
在研究过程中,翁红明发挥了至关重要的作用。他从发表于1965年的一篇实验文献中受到启发,并通过第一性原理计算,初步认定砷化钽晶体等同结构家族材料可能是无需进行调控的、本征的外尔半金属。这类材料能够合成,没有磁性,没有中心对称,是实验制备、检测都非常便捷的绝佳材料。
翁红明说:“这一发现的难度在于,从众多材料中找到合适的对象犹如大海捞针,必须对外尔费米子和材料物理特性都有相当认识才行。”
在外尔费米子被发现的一年后,翁红明和同事们又进一步“预言”:在一类具有碳化钨晶体结构的材料中存在三重简并的电子态。
2017年6月,这个新预言被实验证实,三重简并费米子被首次观测到。这是物理所科研团队继拓扑绝缘体、量子反常霍尔效应、外尔费米子之后,在拓扑物态研究领域取得的又一次重要突破,引起国际物理学界广泛关注。
成绩源于多年的深耕积累。翁红明很享受在物理所工作的经历:“这无关荣誉,我找到了更感兴趣、更加深入的研究领域和方向。”
自由思考、厚积薄发,一直是翁红明喜欢的学术氛围。他所追求的不是多发表文章,而是能攀登科学高峰,真正对人类文明有所贡献。
科研仅靠一个人或一个小组的力量是不够的
作为理论物理学家,翁红明专攻量子材料的计算和设计。
物理学通常分成两大类,即理论物理和实验物理。理论物理通过理论推导和公式推算得出的结论被称为“预言”,“预言”必须通过实验验证才能成为国际公认的科学事实。
在翁红明看来,他接连获得的几次重大发现,都离不开与同事们的通力合作。这,也是他做科研一直特别重视的一点。
“理论预言、样品制备和实验观测,这三个环节缺一个都不行。”翁红明说,“在当今科学领域细分程度非常高的情况下,科研仅靠一个人或一个小组的力量是不够的。当有重要任务目标时,我们几个小组紧密合作,在理论、样品、实验等环节实现了环环相扣、无缝对接。”
在许多人的想象中,理论物理学家的工作,就是每天独自埋头在稿纸堆里计算推演,然后坐着冥思苦想、灵光乍现。
但翁红明认为,计算推演的确要做,思考分析也不可少,但和同行们的交流也非常重要。他每天上班的第一件事就是查看和了解国际上最新的科研进展,然后分析、思考、计算,再把自己的想法跟同事们交流。“很多时候,我的一些想法,或者说突然的一些灵感,其实都是在思考、交流和工作过程当中产生的。”
“发现三重简并费米子”这一成果,就源于翁红明和石友国、钱天两位同事一次喝咖啡时的思想碰撞。
物理所的咖啡厅在学术界享有盛誉,不但因为咖啡好喝,也因为常有科研人员汇聚在此畅聊科学、各抒己见,聊着聊着,灵感经常“火花四射”。
和大家一样,翁红明、石友国和钱天工作之余也喜欢在咖啡厅一聚。翁红明有什么新想法会第一时间告诉他俩;石友国和钱天在实验过程中有什么新发现或疑惑,也会第一时间反馈给翁红明。
“闲聊中就能交换信息,我们的交流是完全敞开的,毫无保留地让大家知道彼此做了什么。”翁红明说。
翁红明告诉记者,在科研道路上,自己非常珍视的成功秘诀有两个,一个是注意总结和积累,另一个就是跟别人多交流。
“目前我努力发展基于大数据和人工智能的凝聚态物质科学研究,其实也是基于这两点考虑,因为所有人的知识积累都体现在这些数据当中。”翁红明说。
做研究应该抓住一些更新奇、更本质的问题
1977年,翁红明出生在江苏泰兴一户普通人家。他的父母都是农民,家里还有一个姐姐。
初中开始,翁红明第一次接触到物理,从此便沉迷其中。“物理让我对周围的世界有了更深入的了解和认识。”翁红明说。
兴趣是最好的老师。对物理的热爱,指引着翁红明叩开了物理科学的大门。
1996年,翁红明参加高考。在填报志愿时,他毫不犹豫地将所有的志愿都填上了物理。最终,他如愿被南京大学物理系录取。
南京大学的物理系在凝聚态物理领域积淀很深。翁红明在这一领域进行相关知识的学习与研究,一学就是9年,直到博士毕业。毕业后,他去了日本的东北大学金属材料研究所做博士后研究,主要研究各种材料的导电性质。
到日本一年半后,翁红明萌生了转换研究方向的想法。
“我想要转到计算方法和程序的发展上,这是凝聚态物理领域中一个最基础也是最具有核心竞争力的方向。”翁红明说,“如果想要在这个领域有长远发展,就要在这个方向上有一定的积累。”在他看来,静下心来探索重要的基础科学问题,要比做一些“短平快”研究更有意义。
想归想,但真正下定决心,翁红明也经过了一番纠结。
他坦言:“当转到一个更基础的方向,也意味着你在未来的几年甚至是更长的时间里都需要耐得住坐冷板凳。所以必须做好思想准备,去做一些积累性的工作。”
2008年,翁红明的人生又有了一次重大转折。
那一年,物理研究所研究员、博士生导师方忠到日本访问交流,翁红明跟他进行了深入的交谈和讨论。
翁红明告诉记者:“他跟我介绍了当时做的一项很有意思的工作。虽然我那时并没有很深刻的理解,却受到很大的启发——做研究应该抓住一些更新奇、更本质的问题。”
在方忠的影响下,2010年,翁红明决定回到国内,入职物理研究所,成为方忠团队的一名成员。
翁红明说:“每个人在一生当中可能会跟很多人交往交谈,但在人生重要转折时刻能够给你启发的却不多。能有这样的机遇去跟方忠老师交流并受到启发,我觉得这是非常宝贵和幸运的。”
在新的一年里,翁红明说自己有很多研究工作要做,尤其是如何在拓扑电子学器件研究方面取得突破,促使拓扑电子态理论变成可落地应用的技术。而这,需要跟器件和应用等方向的研究人员进行交流和讨论。
翁红明相信,拓扑时代的黎明时分正在临近。(记者 吴月辉)
大家好!我是“雪山之王”******
最近
一只半岁的雪豹被放归时却赖着不走
可爱举动打动了不少网友
今天就让我们一起来认识
可盐可甜的“大猫猫”——雪豹
1
我从哪里来?
图源:央视新闻
“雪山之王”雪豹的行踪非常隐秘,然而,比雪豹更隐秘的是雪豹的化石记录。捷克、奥地利、俄罗斯,甚至中国周口店都曾声称发现过雪豹的化石,但最终都是误认。
较为可靠的化石记录仅有两条:一个是在阿尔泰山的山洞,另一个是巴基斯坦上西瓦利克山脉发现的下颌骨化石。随着一颗几乎完整的大猫头骨现世于西藏札达盆地,人们终于初步揭开了雪山之王的身世。这颗头骨形成于440 万年前,是迄今为止最早的具有一定雪豹特征的化石,但它比现存的雪豹体型小约 10%。科学家称其为布氏豹(Panthera blytheae),是与雪豹亲缘关系最近的化石种。
图片来源:J. Tseng 布氏豹(Panthera blytheae)的头骨
雪豹虽然名字带“豹”,但与它亲缘关系最近的现存大猫却是虎。老虎与雪豹究竟什么时候开始分道扬镳,并无定论。可以确定的是,它们的分化是大型猫科动物中最早的。最终,雪豹成了雪山之王,老虎成了丛林之王,而与雪豹关系最近的布氏豹,湮灭在历史的长河中。
图片来源:Mauricio Antón 布氏豹(Panthera blytheae)的复原图
2
别看我可爱,我浑身都是“武器”!
雪豹是大型猫科动物里体型较小的,成年后体重大多数为20-55千克,少部分的雄性能达到75千克以上。它们的四肢比例较短,身上的毛发浓密蓬松,它有一条很长很粗的尾巴。
图源:搜狐网 雪豹的形态
跟大多数猫科动物一样,雪豹也是独居生活的,只有在发情期,它们才会成对出现。白天雪豹主要躲在岩石下休息,到了早晨和晚上,它们就开始频繁活动了。
雪豹是高原物种,主要活动在海拔3000-5000米的地区,为了应对寒冷、缺氧的环境,并在陡峭山间生存和捕猎,雪豹进化出许多“秘密武器”:
自带“加湿器”
与其他大猫相比,雪豹的头骨宽而短,特别是眶后突部分拱起明显,鼻骨宽大。这使得雪豹的鼻腔更大,能给寒冷干燥的空气高效加温加湿。雪豹还长着大鼻孔,每次呼吸可以吸进更多的气体,因此能在稀薄的空气中获取更多的氧气。
“雪”盆大口
雪豹的犬齿横截面呈圆形,因此从各个方向都能对口中的猎物施力,很适应在悬崖峭壁间多样且不确定的攻击角度。另外,雪豹的嘴能张到超过 70°,方便咬住大型猎物粗壮的脖子。
图源:搜狐网 张开嘴的雪豹
抗寒防冻“厚外套”
密集的毛发豹属动物中,数雪豹的毛最密,平均每平方厘米皮肤上有 4000 根毛发。它的毛也最长,冬季腹毛的长度能达到 12 厘米。又厚又长的毛能在雪豹的皮肤附近形成空气层,有效隔绝外界的寒冷,防止热量散失。
图片来源:snowleopard.org 雪豹的毛
“雪地靴”
雪豹的脚掌宽大,指缝间也有厚厚的毛,就像穿了雪地靴,既能保暖,还能轻盈走过雪地而不会下陷太深。
3
一个小秘密,你们听了不许笑!
雪豹是豹属里唯一不会咆哮的物种,这主要取决于发声构造。简单来说,能够咆哮的猫科动物,其舌骨未完全骨化,延展性较高,能发出吼叫声;那么不能咆哮的猫科动物,舌骨则完全骨化,只能发出“咕噜”声。
图源:央视新闻
而雪豹的舌骨骨化程度比老虎高
但又没有小猫那么高
介于二者之间
所以雪豹既不能咆哮
也不能发出“咕噜”声
它的叫声
更像是喘粗气的样子
感兴趣的话
大家可以搜雪豹的叫声听一听
有惊喜哦~
4
属于我的纪念日
雪豹的分布范围仅限于中亚12国里面,即以青藏高原为中心的地带。在过去,雪豹因为皮毛是上好的原料,所以遭到人们的大量捕杀,导致生存状态一度濒危,好在经过多年的保护工作,它们已经成功地从“濒危”下降到“易危”。
目前雪豹的生存状态还不乐观,它的栖息地被严重破坏,尤其是在中亚的一些国家里面,受农牧业、采矿业的影响,加上对偷猎盗猎的打击力度以及气候等因素,雪豹威胁因素仍较为严重。
图源:新华社红外相机拍摄到的雪豹
2013年10月22—23日,为期两天的全球雪豹保护论坛在吉尔吉斯斯坦落下了帷幕。决定将每年的10月23日设为国际雪豹日,同时把2015年确定为国际雪豹年。另外,在此次论坛期间,代表们还通过了《2013-2020年雪豹及其栖息地保护全球规划》和《雪豹保护比什凯克宣言》。
雪豹主要的栖息地在我国,我国雪豹的数量占总量的60%以上,我国针对野生雪豹的保护,主要有三大措施:一是保护栖息地及规划野生动物保护区,二是打击偷猎盗猎及非法贸易,三是加强动物保护意识及法律宣传。
图源:生态环境部 雪豹“自拍”
作为国家一级重点保护动物
“奶凶”的雪山之王
值得更多人的了解和关心
需要全人类共同保护
资料来源:科普中国、京动世界、科普时报、新华社、央视新闻、生态环境部、国家地理中文网
整理:董小娴